

# SnowEx 2017 Summary



- Focused on forest "gap" (half the snow covered world)
- Short list of sensing techniques
  - Made & used inventory of sensors
  - Huge airborne effort
- Determined site requirements
  - Made & used site inventory (still available)
- Major field effort (ground truth)
- Major GBRS effort
- LSOS site
- Installed met station network
- Mature & experimental techniques

- 3-week IOP
- ~100 participants
- Major effort on community building in preparation for future SnowExs & snow mission
- Also to train next generation
- Major logistics & safety effort
- Engaged int'l collaborators
- Public outreach, press, local community
- Stood up snow.nasa.gov website



## **SnowEx 2017 Airborne Sensors & Aircraft**



#### **CORE SENSORS**

- SnowSAR: X & Ku-band radar (ESA)
- CAR: BRDF & multispectral imager (GSFC)
- AESMIR (passive mw, from GSFC) 18 & 36 GHz (did not fly)
- Thermal IR/video suite
  - Imager (GSFC)
  - High-accuracy non-imaging (KT.15, from U.Washington)
  - Video camera (GSFC)
- ASO suite (JPL)
  - Lidar
  - Hyperspectral imager

### Aircraft (flight days)



NRL P-3 (6)



King Air (5)

### **EXPERIMENTAL ALGORITHMS**

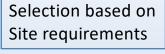
- UAVSAR: L-band InSAR (JPL)
- GLISTIN-A: Ka-band InSAR (JPL)

# tim

Two NASA G-IIIs (4,3)

#### Prototype sensor

WISM: active & passive microwave (Harris Corp IIP)



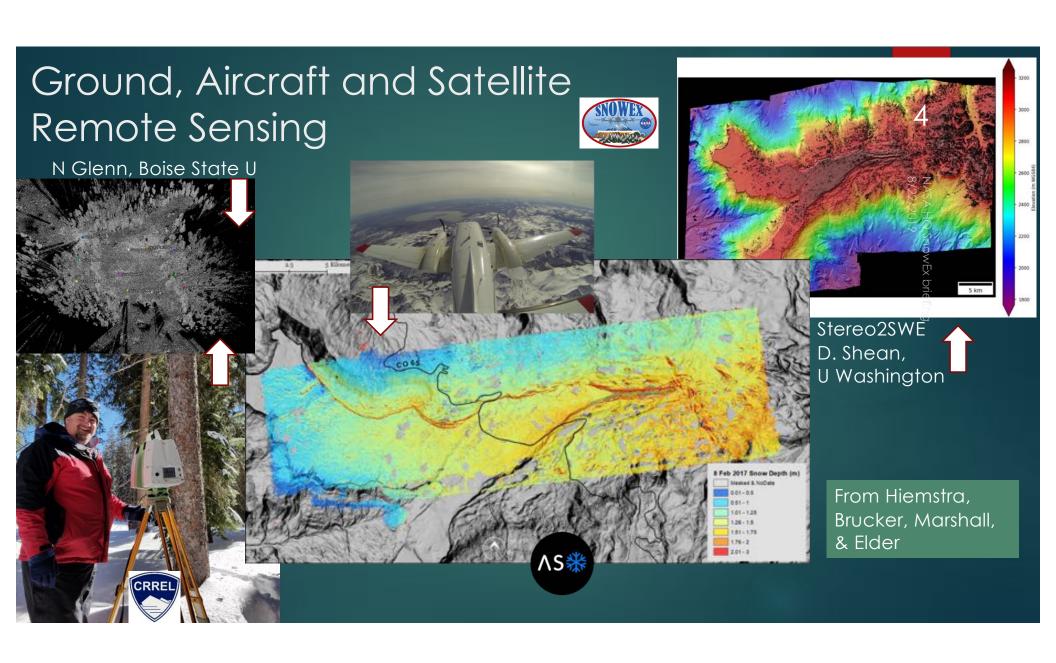

Twin Otter (3)



## **SnowEx 2017 Sites & Aircraft Bases**






Primary SnowEx site: Grand Mesa (GM)

King Air & Twin Otter base: Grand Junction (KGJT)

Secondary SnowEx site: Senator Beck Basin (SB)

AFRC G-III base:
AFRC (KPMD)








# **Ground-base remote sensors on...**







Sled towed by snowmobile (U. de Sherbrooke)







# **SnowEx 2017 was visible from space!**





visible in World View 3 imagery

Credit Digital Globe

#### Satellite data collected:

- Passive microwave (GPM, JAXA/AMSR2)
- VIS/IR (MODIS, VIIRS, Landsat)
- SAR (Sentinel-1); radar (GPM)
- High-res optical (World View, etc)



## **Engaging the Snow Community**



The offer: folks who could commit a week of time were welcome to participate.

The response: 40-50 people x 3 weeks; total ~100 participants (13 international)

The previous **Snow Community** campaign had been 15 years back (CLPX-1 in 2002-03)

So, community building was a major component of SnowEx 2017







NASA HQ SnowEx briefing

























































# SnowEx 2017 Results



New results keep coming in...

Very intriguing...already providing insight into snow mission options

See the 30+ posters!

Can't wait to see what we'll have after more SnowExs



## **SnowEx Motivation**



- A successful SWE satellite concept needs robust algorithms
  - Past concepts' algorithms were judged to have insufficient maturity
  - In part, this resulted from a single-sensor approach to a complex target
- Many sensing techniques are sensitive to snow variables
  - SWE: passive microwave, SAR, InSAR, active-passive microwave
  - Snow depth: lidar, passive microwave, InSAR, Structure-from-Motion
  - SCA: VIS/IR, passive microwave, multispectral, hyperspectral
  - Albedo: VIS/IR, multispectral, hyperspectral

BUT: No single sensing technique works across all types of snow and confounding factors

- The challenges of snow mass (SWE) retrieval include
  - Forests (half the snow-covered world)
  - · Wet snow, deep snow, shallow snow
  - Complex terrain
  - Layering inside snowpacks. Metamorphism; Needing density to convert depth to SWE
  - Clouds, atmospheric propagation
  - Retrievals that require ancillary data that is difficult to obtain

We need multi-sensor data to perform mission concept trade studies





# **Science & Implementation Plans**



 THP16 group was charged with generating a Science Plan and Implementation Plans

- SnowEx Science Plan
  - Defines and articulates gaps in SWE retrieval capability
    - 1. Forest snow
    - 2. Mountain snow
    - 3. Tundra snow
    - 4. Prairie snow
    - 5. Maritime snow
    - 6. Snow surface energetics
    - 7. Wet snow
  - Lists sensing techniques, categories, & priorities



https://tinyurl.com/ybshd54d



# Snow depth/SWE estimation capabilities



# Current capabilities from SnowEx Science Plan

#### Rows =

- sensing techniques
- models

#### Columns =

- gaps,
- snow parameters,
- space potential

Check out newer version Poster!!

|                              |                                          | Snow Characteristic |     |      | Gap Capabilities |             |              |         |                        |                 | Space Potential |                  |                    |                         |
|------------------------------|------------------------------------------|---------------------|-----|------|------------------|-------------|--------------|---------|------------------------|-----------------|-----------------|------------------|--------------------|-------------------------|
| Туре                         | Snow sensing/<br>estimation<br>Technique | Snow<br>Depth       | SWE | Melt | High-<br>Res     | Wet<br>snow | Deep<br>Snow | Forests | Comple<br>x<br>Terrain | Shallow<br>Snow | Clouds          | Path to<br>Space | Global<br>coverage | Mature<br>Algorith<br>m |
| SWE via snow depth           | Lidar <sup>1</sup>                       |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Ka-band InSAR                            |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Dual band Ku/Ka<br>altimetry             |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Stereo<br>Photogrammetry                 |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Wideband<br>Radiometer                   |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Volume<br>scatterin<br>8     | Ku-band SAR                              |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Passive<br>Microwave                     |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Signal<br>interfero<br>m.    | L-Band InSAR                             |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Sig<br>inter<br>m            | Signals of<br>Opportunity                |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Airborne<br>/ ground<br>only | FMCW Radar                               |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Airb / grc                   | Gamma                                    |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
| Modeling                     | Physical<br>Modeling                     |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |
|                              | Radiative<br>Transfer<br>Modeling        |                     |     |      |                  |             |              |         |                        |                 |                 | _                |                    |                         |
|                              | Data-driven<br>modeling                  |                     |     |      |                  |             |              |         |                        |                 |                 |                  |                    |                         |

Green – Demonstrated capability. May not work in all areas, but uncertainty is understood. May still benefit from additional research and algorithm development. TRL > 5?

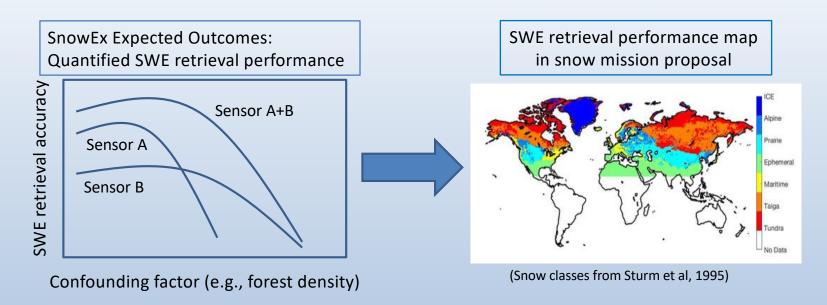
Yellow – Potential capability identified and validated in multiple studies. Research needed to better quantify uncertainty. TRL 3-5?

Orange – Potential capability identified, but uncertainty not quantified. High risk. TRL 1-2?

Red – No Capability



## **SnowEx at a Glance**




- SnowEx 2017
  - Feb 2017; Western Colorado;
  - Focused on forest gap
  - Community-building was a major goal
- SnowEx 2019 has become SnowEx 2020 (gov't shutdown)
  - Time series over the winter; western US
  - IOP on Grand Mesa
  - Addresses multiple gaps in Science Plan
- SnowEx 2021, 2022, 2023
  - Planning in progress by steering group (THP16 + THP17 selectees + Center reps)
  - Guided by SnowEx Science Plan ("gaps")



## What we need from SnowEx





SnowEx is how we obtain input data for mission concept trade studies

- Which sensing techniques work how well for different snow types and under different confounding factors?
- The trade space should span the sensors, snow types, & confounding factors → SnowEx should span the same
- SnowEx 2017 focus: one confounding factor = forests (half of snow-covered land areas)



## Ingredients for a winning satellite mission proposal

Top notch science importance (why)

Strong societal benefits (who cares)

Mission concept (how, where, how often)

Robust algorithms that convince reviewers (how)

• Why now? (urgency, when)

Unified community; strong team

• Believable budget, schedule

Mission proposals are major efforts—1 full year

• Reviews are really thorough

easy for snow

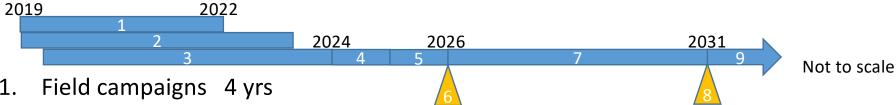
easy for snow

making progress

needs (lots of) work

easy for snow

making good progress


clear your calendar

as they should be for \$100Ms

Many successful examples: SMAP, Aquarius, GPM



# Snow satellite mission timeline (notional)



- SnowExs: 4 more years
- Canadian campaigns?
- Finnish campaigns: next 3 years
- 2. Analyze data/develop robust algorithms (coincident w/campaigns) 5-6 yrs
- 3. Design the mission concept (e.g., constellation components, models) ~6 yrs
- 4. Write the proposal 1 yr
- 5. Review panel/selection process 1 yr (note: timing of call not yet known)
- 6. Congratulations! Your mission proposal has been selected
- 7. Design, build, test your satellite ~5 yrs
- 8. Launch!
- 9. Groundbreaking science

It is possible to accelerate this timeline



30 day

# Ingredient: a mission concept

- No single SWE sensing technique works everywhere → combination
- Many sensors already in orbit or planned → leveraging
- No single space agency can afford the entire system → partnering

Natural questions: what would we get from different mission

configurations?

• Example: snow maps + orbit simulators

|                   | ICE         | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                          |
|-------------------|-------------|----------------------------------------------------------------------------------------------------------------|
|                   | Alpine      | ALL HER STEEL BELLEVILLE STEEL S |
|                   | Prairie     |                                                                                                                |
|                   | - Ephemeral |                                                                                                                |
| · Con Contraction | Maritime    |                                                                                                                |
|                   | Taiga       |                                                                                                                |
| ly V" W;          | Tundra      | V.                                                                                                             |

|                        | •         | •         |                 |
|------------------------|-----------|-----------|-----------------|
| AMSR-2                 | 98.3%     | 99.8%     | 99.8%           |
| Sentinel-1             | 24.7%     | 59.9%     | 92.2%           |
| ICESat2*               | 0% / 1.1% | 0% / 3.2% | 1.4% /<br>20.4% |
| Wide<br>swath<br>LIDAR | 5.7%      | 15.8%     | 49.2%           |

3 day

6/5/2019

Eastern Snow Conference Amerage percentage of sensor-observed snow coverage

# **Snow Mission Context & Background**



Previous/current attempts to get a snow satellite mission & opportunities

- US: Decadal Survey 1—"DS1" (2007)
  - Tier 1,2,3 missions; SWE ("CLPP") in Tier 3
- US: Decadal Survey 2—"DS2" (2017)
  - Mission categories (not a complete list)
    - <u>Designated</u> ≈Tier 1 = guaranteed missions; albedo (including snow) is in this category
    - Explorer ≈Tier 2 = 7 measurements vying for 3 mission slots; SWE is in this category
    - Our competition = the other 6 potential Explorer missions
- ESA: COREH2O, EE10
- Canada (TSMM), China (WCOM)
- Examples of what a global mission enables: Aquarius, SMAP, GPM
- Global snow products (cover, depth, SWE) already exist (IMS, GlobSnow, NWP, AMSRx), so a snow mission would be an *improvement* rather than a totally new product

  Eastern Snow Conference 2019 17

"Surface Biology & Geology " Mission

> "Snow Depth & SWE" Mission